domingo, 10 de diciembre de 2006

PROTEINAS

PROTEINAS (Guía resumen )
Juan Videla A.
Prof.Biología –Enfermero

Son constituyentes químicos fundamentales e imprescindibles en la materia viva porque:

a)son los "instrumentos moleculares" mediante los cuales se expresa la información genética; es decir, las proteinas ejecutan las órdenes dictadas por los ácidos nucléicos
.b)son sustancias "plásticas" para los seres vivos, es decir, materiales de construcción y reparación de sus propias estructuras celulares. Sólo excepcionalmente sirven como fuente de energía.
c)muchas tienen "actividad biológica" (transporte, regulación, defensa, reserva, etc...). Esta característica diferencia a las proteinas de otros principios inmediatos como glúcidos y lípidos que se encuentran en las células como simples sustancias inertes.

Composición Química y Clasificación

Las proteinas son biopolímeros (macromoléculas orgánicas), de elevado peso molecular, constituidas basicamente por carbono (C), hidrógeno (H), oxígeno (O) y nitrógeno (N); aunque pueden contener también azufre (S) y fósforo (P) y, en menor proporción, hierro (Fe), cobre (Cu), magnesio (Mg), yodo (Y), etc...
Estos elementos químicos se agrupan para formar unidades estructurales (monómeros) llamados AMINOACIDOS, a los cuales podriamos considerar como los "ladrillos de los edificios moleculares protéicos". Estos edificios macromoleculares se construyen y desmoronan con gran facilidad dentro de las células, y a ello debe precisamente la materia viva su capacidad de crecimiento, reparación y regulación.

Las proteinas son, en resumen, biopolímeros de aminoácidos y su presencia en los seres vivos es indispensable para el desarrollo de los múltiples procesos vitales.
Se clasifican, de forma general, en Holoproteinas y Heteroproteinas según esten formadas respectivamente sólo por aminoácidos o bien por aminoácidos más otras moléculas o elementos adicionales no aminoacídicos

Los aminoácidos.

Son las unidades básicas que forman las proteinas. Su denominación responde a la composición química general que presentan, en la que un grupo amino (-NH2) y otro carboxilo o ácido (-COOH) se unen a un carbono (-C-). Las otras dos valencias de ese carbono quedan saturadas con un átomo de hidrógeno (-H) y con un grupo químico variable al que se denomina radical (-R).


ESTRUCTURA DE LAS PROTEÍNAS

A primera vista podría pensarse en las proteínas como polímeros lineales de AA unidos entre sí por medio de enlaces peptídicos. Sin embargo, la secuencia lineal de AA puede adoptar múltiples conformaciones en el espacio. La estructura primaria viene determinada por la secuencia de AA en la cadena proteica, es decir, el número de AA presentes y el orden en que están enlazados. La conformación espacial de una proteína se analiza en términos de estructura secundaria y estructura terciaria. La asociación de varias cadenas polipeptídicas origina un nivel superior de organización, la llamada estructura cuaternaria. Por último, la asociación de proteínas con otros tipos de biomoléculas para formar asociaciones supramoleculares con carácter permanente da lugar a la estructura quinaria.
Por tanto, podemos distinguir cinco niveles de estructuración en las proteínas:
•estructura primaria
•estructura secundaria
•estructura terciaria
•estructura cuaternaria
•estructura quinaria (asociaciones supramoleculares)

Los enlaces que determinan la estructura primaria son covalentes (enlace amida o enlace peptídico), mientras que la mayoría de los enlaces que determinan la conformación (estructuras secundaria y terciaria) y la asociación (estructura cuaternaria y quinaria) son de tipo no covalente

La estructura primaria viene determinada por la secuencia de AA en la cadena proteica, es decir, el número de AA presentes y el orden en que están enlazados . Las posibilidades de estructuración a nivel primario son prácticamente ilimitadas. Como en casi todas las proteínas existen 20 AA diferentes, el número de estructuras posibles viene dado por las variaciones con repetición de 20 elementos tomados de n en n, siendo n el número de AA que componen la molécula proteica.

La estructura secundaria es el plegamiento que la cadena polipeptídica adopta gracias a la formación de puentes de hidrógeno entre los átomos que forman el enlace peptídico. Los puentes de hidrógeno se establecen entre los grupos -CO- y -NH- del enlace peptídico (el primero como aceptor de H, y el segundo como donador de H). De esta forma, la cadena polipeptídica es capaz de adoptar conformaciones de menor energía libre, y por tanto, más estables.

La estructura secundaria de una proteína es la que adopta espacialmente. Existen ciertas estructuras repetitivas encontradas en las proteínas que permiten clasificarlas en dos tipos: hélice alfa y lámina beta.
Una hélice alfa es una apretada hélice formada por una cadena polipeptídica. La cadena polipetídica principal forma la estructura central, y las cadenas laterales se extienden por fuera de la hélice. El grupo carboxílo (CO) de un aminoácido n se une por puente hidrógeno al grupo amino (NH) de otro aminoácido que está tres residuos mas allá ( n + 4 ). De esta manera cada grupo CO y NH de la estructura central (columna vertebral o "backbone") se encuentra unido por puente hidrógeno.
Existen tres modelos de alfa hélice. El primero muestra solo al carbono alfa de cada aminoácido. El segundo muestra todos los átomos que forman la columna vertebral del polipéptido .
El tercero y mas completo modelo, muestra todos los puentes hidrógeno que mantienen la alfa-hélice. Las hélices generalmente están formadas por aminoácidos hidrófobos, en razón que son, generalmente, la máxima atracción posible entre dichos aminoácidos. Las hélices se observan, en variada extensión, prácticamente en todas las proteínas

La estructura terciaria:
es la estructura plegada y completa en tres dimensiones de la cadena polipeptídica. A diferencia de la estructura secundaria, la estructura terciaria de la mayor parte de las proteínas es específica de cada molécula, además, determina su función.
EL plegamiento terciario no es inmediato, primero se agrupan conjuntos de estructuras denominadas dominios que luego se articulan para formar la estructura terciaria definitiva. Este plegamiento está facilitado por uniones denominadas puentes disulfuro, -S-S- que se establecen entre los átomos de azufre del aminoácido cisteína.

Estructura cuaternaria :
Solo está presente si hay mas de una cadena polipeptídica. Con varias cadenas polipeptídicas, la estructura cuaternaria representa su interconexión y organización.






.

.

No hay comentarios: